import matplotlib.pylab as plt
import cv2
import numpy as np
image = cv2.imread('road.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(image.shape)
height = image.shape[0]
width = image.shape[1]
region_of_interest_vertices=[
(0, height),
(width/2, height/2),
(width, height)
]
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
channel_count = img.shape[2]
match_mask_color = (255,)* channel_count
cv2.fillPoly(mask, vertices, match_mask_color)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
cropped_image = region_of_interest(image, np.array([region_of_interest_vertices], np.int32))
plt.imshow(cropped_image)
plt.show()
import cv2
import numpy as np
image = cv2.imread('road.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(image.shape)
height = image.shape[0]
width = image.shape[1]
region_of_interest_vertices=[
(0, height),
(width/2, height/2),
(width, height)
]
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
channel_count = img.shape[2]
match_mask_color = (255,)* channel_count
cv2.fillPoly(mask, vertices, match_mask_color)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
cropped_image = region_of_interest(image, np.array([region_of_interest_vertices], np.int32))
plt.imshow(cropped_image)
plt.show()
import matplotlib.pylab as plt
import cv2
import numpy as np
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
#channel_count = img.shape[2]
match_mask_color = 255
cv2.fillPoly(mask, vertices, match_mask_color)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def drow_the_lines(img, lines):
img = np.copy(img)
blank_image = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(blank_image, (x1, y1), (x2, y2), (0, 255, 0), thickness=3)
img = cv2.addWeighted(img, 0.8, blank_image, 1, 0.0)
return img
image = cv2.imread('road.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(image.shape)
height = image.shape[0]
width = image.shape[1]
region_of_interest_vertices = [
(0, height),
(width/2, height/2),
(width, height)
]
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny_image = cv2.Canny(gray_image, 100, 200)
cropped_image = region_of_interest(canny_image, np.array([region_of_interest_vertices], np.int32), )
lines = cv2.HoughLinesP(cropped_image,
rho=6,
theta=np.pi/60,
threshold=160,
lines=np.array([]),
minLineLength=40,
maxLineGap=25)
image_with_lines = drow_the_lines(image, lines)
image_with_lines = canny_image
plt.imshow(image_with_lines)
plt.show()
import cv2
import numpy as np
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
#channel_count = img.shape[2]
match_mask_color = 255
cv2.fillPoly(mask, vertices, match_mask_color)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def drow_the_lines(img, lines):
img = np.copy(img)
blank_image = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(blank_image, (x1, y1), (x2, y2), (0, 255, 0), thickness=3)
img = cv2.addWeighted(img, 0.8, blank_image, 1, 0.0)
return img
image = cv2.imread('road.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(image.shape)
height = image.shape[0]
width = image.shape[1]
region_of_interest_vertices = [
(0, height),
(width/2, height/2),
(width, height)
]
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny_image = cv2.Canny(gray_image, 100, 200)
cropped_image = region_of_interest(canny_image, np.array([region_of_interest_vertices], np.int32), )
lines = cv2.HoughLinesP(cropped_image,
rho=6,
theta=np.pi/60,
threshold=160,
lines=np.array([]),
minLineLength=40,
maxLineGap=25)
image_with_lines = drow_the_lines(image, lines)
image_with_lines = canny_image
plt.imshow(image_with_lines)
plt.show()
No comments:
Post a Comment