import cv2
import numpy as np
from matplotlib import pyplot as plt
#test diff images
#img = cv2.imread('opencv-logo.png')
#img = cv2.imread('gauss_images.png')
img = cv2.imread('Noise_salt_and_pepper.png')
#img = cv2.imread('lena.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
kernel = np.ones((5,5), np.float32)/25
dst = cv2.filter2D(img, -1, kernel)
blur = cv2.blur(img, (5,5))
#Applying gaussian blur method
gblur = cv2.GaussianBlur(img, (5,5), 0)
median = cv2.medianBlur(img, 5)
bilateralFilter = cv2.bilateralFilter(img, 9, 75, 75)
titles = ['image', '2D convolution', 'Blur', 'GaussianBlur', 'median', 'bilateralFilter']
images = [img, dst, blur, gblur, median, bilateralFilter]
for i in range(6):
plt.subplot(2, 3, i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
import numpy as np
from matplotlib import pyplot as plt
#test diff images
#img = cv2.imread('opencv-logo.png')
#img = cv2.imread('gauss_images.png')
img = cv2.imread('Noise_salt_and_pepper.png')
#img = cv2.imread('lena.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
kernel = np.ones((5,5), np.float32)/25
dst = cv2.filter2D(img, -1, kernel)
blur = cv2.blur(img, (5,5))
#Applying gaussian blur method
gblur = cv2.GaussianBlur(img, (5,5), 0)
median = cv2.medianBlur(img, 5)
bilateralFilter = cv2.bilateralFilter(img, 9, 75, 75)
titles = ['image', '2D convolution', 'Blur', 'GaussianBlur', 'median', 'bilateralFilter']
images = [img, dst, blur, gblur, median, bilateralFilter]
for i in range(6):
plt.subplot(2, 3, i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
No comments:
Post a Comment